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A STUDY OF LIQUIDS BY NEUTRON SCATTERING 

by 

P. J. Pers ian! 

SUMMARY 

A radial density-distribution function for liquids was 
derived with the aid of the assumption that there existed 
vibrational modes in the liquid. The distribution function 
was obtained only for elastically scattered neutrons. 

A study of si(s) curves as a function of temperature , 
as well as the energy distribution of the scattered neutrons, 
affords a way in which to construct a model describing the 
motion of atoms in a liquid. 

I. Introduction 

Interference effects observed in liquids by the scattering of X rays ' ' ^ 
and low-energy neutrons(3-5) indicate a regularity in the arrangement of the 
sca t te re rs extending over several atomic distances from some origin atom. 

In the case of X-ray scattering, Zernicke and Prins(6) and Debye 
and Menke'^) were the first to derive an expression for the radial density 
distribution from a differential scattering cross section based on the model 
of a solid composed of infinitely heavy sca t te re rs ; that is , temperature ef
fects were neglected, since the change in the energy of the photon is negli
gible compared with the incident energy. 

When temperature effects and energy transfer are not negligible, 
the motion of the sca t te re rs must be considered. In liquids this motion is 
not well understood at present . Van Hove(°' has presented a general theory 
of scattering for a rb i t ra ry part icles in which a space- and time-dependent 
distribution function is introduced as a Fourier transform of the differential 
cross section. For liquids, when the assumption is made that atoms undergo 
a diffusive type of motion, in the limit of zero time displacement (static 
approximation) the formalism gives the ordinary radial distribution as de
rived by Zernicke and Pr ins . 

Vineyard''^) and Brockhouse.U''J using the classical model of diffuse 
motion for liquids, have calculated the energy spread of the scattered neu
trons. Recent experiments(i 1-i^) with water do not seem to verify this 





broadening. Fur ther , if the motion were purely diffuse, as proposed by 
Vineyard, the energy distribution of the scattered neutrons should be rather 
smooth. However, Hughes ^ al.(l2) and Larsson ^ al.,(13) in contrast to 
Brockhouse, report the observation of definite peaks, which indicate quan
tum effects s imilar to those used in describing the motion of atoms in a 
solid. 

The hypothesis that the liquid state may be considered as a poly-
crystalline mater ia l has been used fairly successfully by many investiga
tors in studying specific heats as well as other thermodynamic quantities 
of liquids.(14) 

Perhaps the diffuse motion of the atoms in a system may be consid
ered as a cooperative diffusive motion, giving the effect of an oscillatory 
motion at some position of equilibrium. 

The purpose of this and subsequent papers is to study the structure 
of fluids by means of a "quasi-polycrystalline" model for liquids. In other 
words, it is assumed that the atoms are in "vibrational motion" lor a time 
long compared with the time associated with diffuse motion. Any diffusive 
motion of the atoms (molecules or aggregates of atoms) is considered as 
having a negligible effect on the scattering. 

The differential scattering cross section for a system of oscillating 
atoms has been explicitly calculated by Zemach and Glauber'!^/ and by 
others.(1°) The t ime- and space-dependent distribution function for this 
model has been considered by Van Hove and leads to the above result . In 
the present paper, however, the development of the radial density-
distribution function s tar ts with the explicit form of the differential cross 
section and is Fourier transformed later in the analysis. This procedure 
is essentially that of Zernicke and Pr ins . 

Aside from starting with a differential cross section which involves 
temperature effects, the radial distribution obtained in this paper includes 
an angle-dependent scattering factor. This factor is usually neglected at 
small-angle scattering since it involves the size of the scattering sample, 
which is assumed to be large. The derivation in this paper leads to the 
small-angle effect which involves the size of the "crystal l i tes" in a poly-
crystalline mater ia l ra ther than the sample size. This means that the 
factor manifests its effect at larger angles than is usually expected. Ex
perimentally, this small-angle scattering is avoided and the intensity is 
then extrapolated to zero as the scattering angle approaches zero. The 
present analysis suggests that experiments include intensity measurements 
at smaller angles than those currently used. 
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These cross sections are readily obtained from Zemach and 

Glauber's(l5) Eqs. (3.19) and (3.20) by substituting the generating function 

for the summation term in Eq. (3.19), expanding the resulting exponential 

in a Taylor Series (phonon expansion), and using 

^ [ ( K o - K ) e s ] ' i q s ( R , -Sk) 
X = " "~7 T ^ — 

2cu_mN sinh (S'tUs/2koT) 

as the argument of the Bessel function. 





The c r o s s s e c t i o n s d e s c r i b e the p r o c e s s in which i phonons 
( v i b r a t i o n a l e n e r g y of f r e q u e n c i e s cOg and wave v e c t o r s qg) a r e e m i t t e d 
("0 3 = -1) °^ a b s o r b e d (r) g = +1) by the s y s t e m of N s c a t t e r e r s a f te r i n t e r 
ac t ing wi th a n e u t r o n whose e n e r g y has been changed by AE = E - £„ . 

The def in i t ions of the r e m a i n i n g t e r m s a r e a s fo l lows : mo is the 
n e u t r o n m a s s , m is the m a s s of the n u c l e i , ji is the r e d u c e d m a s s of the 
s y s t e m , e^ is the uni t p o l a r i z a t i o n v e c t o r of the p r o p a g a t i o n v e c t o r qg, 
K i s P l a n c k ' s c o n s t a n t d iv ided by Z-n, ko is B o l t z m a n n ' s cons t an t , and 
T is the t e m p e r a t u r e of the s c a t t e r i n g s y s t e m . 

The i n c o h e r e n t s c a t t e r i n g length a j ^ c ' due to i so tope and sp in ef
f e c t s , and the c o h e r e n t s c a t t e r i n g length a^oh ^^e def ined a s ( l ^ ) 

"coh - | 4 - P i ( * + ^i-f + w . a j 

^•„e =Zpi(w+ ai+ + , 2 
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;th ; w h e r e pĵ  is the abundance of the i i so tope wi th s c a t t e r i n g ampl i t ude a .̂). 
for t o t a l sp in I -̂  -|-, and a j . for to ta l sp in I - -1-. The weight ing f a c t o r s w.(. 
and w_ a r e 

- I + 1 
21 + 1 

The exponen t in the D e b y e - W a l l e r in tens i ty f ac to r e"^ is g iven by 
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and wi th the a p p r o x i m a t i o n 
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The Debye-Waller factor is a measure of the reduction in the intensity 
of the scat tered beam due to the thermal motion of the sca t t e re r s . 

The main features in the analysis leading to the radial density-
distribution function may be presented by considering the zero-phonon 
( i = 0) p rocess . This is essentially the f i r s t -order approximation for an 
elastic collision, | K | = |KO]. The broadening in the angular distribution of 
the elastically scat tered neutrons results from phonon processes of higher 
order ( i>2). 

The incoherent and coherent cross sections for i = 0 reduce to 

do i 

dn •N af -2W 

and 

d a coh 

dn 
— a^^ e-2^ , 2 ^coh e 

N N y J g i ( K o - K ) ( R j - R k ) 

j=l k=i 

In a polycrystalline mater ia l , the geometric order of the atoms, 
which maximizes the coherent cross section, extends only over the c rys 
tallite if the crystal l i tes are randomly oriented. If it be assumed that 
the crystal l i tes in the sample to have an effective radius r j , the summa
tions in the coherent c ross section is performed over the atoms within 
this distance and then summed over all the crystall i te. If N Q is the 
number of crystal l i tes in the scattering sample and N ^ is the number of 
atoms in the crystall i te of size r j , then the cross section may be written 

d a coh 
dfi 

2 

^coh 

N , 

I 
N A 

>: 
j = i 

N A 

>; 
k=i 

gi|Ko-K||Rj Ekicosaj 

where a^ is the angle between the vectors (KQ - K) and (Rj - Rj^), and 
defines the orientation of the ntb crystall i te. The effect of random orien
tation is taken into account by averaging over cos a ^. Taking the co
ordinate axis to coincide with the direction (Ko - K) ^nd with the elemental 
solid angle dQ^ = 27rsinan dan, the average of the exponential is 

1 
471 

dn. 4k •^jk 

•"jk 

where s = | I S O - K | and rjj^ = |RJ - Bkl- The averaged coherent differential 
cross section becomes 
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•-Jk 

S u m m i n g o v e r j a n d k , t h e d o u b l e s u m m a t i o n i s w r i t t e n a s 
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Z , - , s i n s r j i ^ _ s i n s r j k 

Z-/ g J. . A A /_j c r - i * j = l k = l j r k= i •^Jk 

w h e r e the f i r s t t e r m is for j = k and the second t e r m is the sum over the 
d i s t a n c e s rjj^ of the k*-" a t o m s f r o m an o r ig in a tom j . Since the to ta l n u m b e r 
of a t o m s in the s c a t t e r i n g s a m p l e is N = N ^ N c , the c o h e r e n t c r o s s s ec t i on 
is then 

d a c o h ™o 

dn M 2 coh 
-2W 

N A - 1 . 

Z s m s r ; i , ^ 
k=i 

s r Jk 

T h i s e x p r e s s i o n is ana logous to that d e r i v e d by Debye and Menke 
for X r a y s . The r e l a t i o n for X r a y s with i so tope and sp in effects neg lec t ed 
m a y be ob ta ined by r e p l a c i n g {m^^ ) a„Qj^ with the a t o m i c s t r u c t u r e fac to r 
which is dependen t on the s c a t t e r i n g ang le . As ide f rom the D e b y e - W a l l e r 
in t ens i ty f a c t o r , a n o t h e r d i f fe rence is that the above r e l a t i o n is s u m m e d 
ove r the i n t e r a t o m i c d i s t a n c e s wi th in the c r y s t a l l i t e r a t h e r than over the 
whole of the s a m p l e . 

The s u m m a t i o n t e r m is t r a n s f o r m e d into an i n t e g r a l f o r m by in 
t roduc ing a r a d i a l d e n s i t y - d i s t r i b u t i o n function 47rp(r) and i n t eg ra t i ng 
ove r the r a n g e of r f r o m z e r o to the effective r a d i u s of the c r y s t a l l i t e r j . 
F o r the c a s e of l i q u i d s , th is effect ive r a d i u s is the extent to which a t o m s 
m a y be c o n s i d e r e d as being a r r a n g e d in some o r d e r f r o m an o r ig in a tom. 
The d i s t r i b u t i o n function is n o r m a l i z e d so that 

d r 47Tr2p(r) = N^ j , 

is the n u m b e r of a t o m s about an o r ig in a tom conta ined wi thin the s p h e r i c a l 
she l l having an o u t e r r a d i u s r^, and an inner r a d i u s r^ . The c o h e r e n t c r o s s 
s ec t i on in t e r m s of the r a d i a l d e n s i t y - d i s t r i b u t i o n function then b e c o m e s 

dOcoh mo -2W 

dn M 
c o h 

N I -^ j dr 47ir^p(r) 





The u p p e r l i m i t of i n t e g r a t i o n m a y be ex tended beyond r j by 
introducing the a v e r a g e r a d i a l dens i t y po, defined a s 

Po 

/ d r 47Tr^p(r) 
Jo 

Jo 
dr 47T r 

for l a r g e R, o r 

Po = p ( r ) for r a r j 

By adding and s u b t r a c t i n g the t e r m 

2 s in s r 
d r 47T r po 

then , f r o m the above condi t ion the c r o s s s e c t i o n is w r i t t e n as 

dOcoh ™-o 
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With the l a s t t e r m e v a l u a t e d as 
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where 

(sr i ) = 3^ 
s in s r j - s r j cos s r j 
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and e be ing the s c a t t e r i n g a n g l e , the c o h e r e n t c r o s s s ec t i on b e c o m e s 

dOcoh mp 
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The last t e rm is the small-angle-scat ter ing correction te rm, at 
SKO, 4>(sri)~l. At large scattering angle, <I>(srj) approaches zero and, 
depending on the magnitude of r^, the te rm may be neglected. 

The observed differential cross section is the sum of the coherent 
and incoherent pa r t s : 

/ d a \ ^^_^coh da^„^ 
\dn/„hs ~ dn '"' dn 

so that 

ml Na.' . Vdn 
/ d a \ ^coh + ^inc ^,f^i\.^, v 
( d n ) ^ = — T F - + N ( - ] a.(sr,) 

0 •'^^coh obs ^coh 

-̂  I dr 4Trr2 ^p(r) - po, ^^ 

Defining 

l ^ { 4 o h + 4 n c } = ' 'coh+ Oi 

as the total scattering cross section for a bound isolated nucleus, and 
letting 

i(g, J j i i £ ! ! : _ ^ ^ ( ^ ) -_^-N(-l iy*(sr,) 
^ ' \ ml N a e o h ^ d n / ^ b s °coh ^^' 

the radial density relation becomes 

si(s) = / dr 47Tr <̂  p(r ) - po 

Jo 

From the Rieman-Lebesque lemmas,(1°^ if 

/ dr 47rr J p(r) - po ' 0 

exists and converges absolutely, and further if 47rr |p(r) - poj has limited 
total fluctuation in the range (0,<=°) then, as s — oo, 

si(s} — 0 ( l / s ) 





With this condition in si(s), the Fourier t ransform of the si(s) 
relation yields the radial density distribution 

47Tr^<^p(r) Po — / ds si(s) sin sr 
•n / 

Measurements are made only over finite values of s. To satisfy 
the condition on si(s), the usual procedure is to normalize the experimental 
data such that at large s, i(s) = 0, or 

/ d a \ rno NOcoh 
Vdn/ obs M' 47T Ccoh 

+ N [^1 *(-i) 

The only unknown quantity in this expression is r j . In pract ice, for 
an experimentally realizable s ~ 12A"' and ri>10A, the last t e rm may be 
dropped. 

However, the effective size of the crystall i tes may be obtained from 
the data at small-angle (s = 0) scattering. Taking the limit of i(s) as s — 0 , 
then one gets 

lim i(s) = lim 
s — 0 s—0>-

dr 4Trr^ [p(r) - p^ 

f 
Jo 

dr 47rr^ [p(r) - p,,] = 0 

The above relation for the differential cross section is then valid 
for very small angles. In this limit, the Debye-Waller factor (which is a 
function of s^) and $(sri) approach unity so that the differential cross sec
tion becomes 

(A2\ 
\ dn/ 

m'o Na coh 

obs 47T Ocoh ^ R / 

If the latter te rm predominates, the N intensity behavior is modified 
by the crystal l i te and sample volume ratio. 
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II. Discussion 

The above analysis gives a radial density-distribution relation which 
differs from previously and currently used expressions in 2 respects . The 
first difference is the inclusion of the Debye-Waller intensity factor, which 
results from the assumed vibrational motion of the atoms (temperature ef
fect). The second difference, independent of the model used in describing 
the motion of a toms, is the addition of the term which involves the effects 
of small-angle scattering. 

An experimental check on the existence or absence of vibrational 
modes in liquids is to study the temperature effect on the intensity through 
the Debye-Waller factor. 
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